Table 3. Hydrogen-bonding geometry (Å, °)

<i>D</i> H· · · ∕ <i>A</i>	<i>D-</i> –H	H···A	$D \cdot \cdot \cdot A$	D—H···A		
N13—H13· · · O35	0.860	1.977	2.834 (4)	174.3		
O35—H1W· · · O34	0.948	1.743	2.688 (3)	174.3		
N15-H15A···O33	0.860	2.181	3.023 (4)	166.2		
O35—H2W· · · O32 ⁱⁱ	0.833	2.352	3.099 (4)	149.4		
O35—H2W· · ·O33 ⁱⁱ	0.833	2.525	3.232 (4)	143.3		
N15—H15B···O32 ⁱⁱⁱ	0.860	2.227	3.035 (4)	156.4		
N15—H15B···O34 ⁱⁱⁱ	0.860	2.499	3.232 (5)	143.6		
Symmetry codes: (i) $-x$, $1 - y$, $1 - z$; (ii) $-1 - x$, $1 - y$, $1 - z$;						
(iii) $1 + x, y, z$.						

The data were collected using a fixed scan speed of 1.2° min⁻¹ and a scan width of 1.2° . The structure was solved by a combination of Patterson and direct methods on the difference structure. Refinement was performed with full-matrix least-squares on F^2 for all reflections. The sum of the occupation factors of the disordered *m*-tolyl moiety was constrained to 1.0. The ring distances of these moieties were tied to a free variable and restrained to vary within 0.03 Å. Adjacent non-H atoms were restrained to have the same U_{ij} components within 0.01 Å². H atoms were calculated at geometrical positions and allowed to ride on their parent atoms.

Data collection: Hilger & Watts Y290 software. Cell refinement: XRAY76 PARAM (Stewart et al., 1976). Data reduction: REDU4 (Stoe & Cie, 1992). Program(s) used to solve structure: DIRDIF (Beurskens et al., 1981). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEX2.1b (McArdle, 1994). Software used to prepare material for publication: PARST (Nardelli, 1983).

The authors thank Dr Jan Tollenaere of Janssen Research Foundation, Beerse, Belgium, for the provision of a sample of the title compound.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: NA1140). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Beurskens, P. T., Bosman, W. P., Doesburg, H. M., Gould, R. O., Van Den Hark, Th. E. M., Prick, P. A. J., Noordik, J. H., Beurskens, G. & Parthasarathi, V. (1981). *DIRDIF*. Technical Report 1981/2. Crystallography Laboratory, Univ. of Nijmegen, The Netherlands.
- Blaton, N. M., Peeters, O. M. & De Ranter, C. J. (1985). Eur. Cryst. Meet. p. 426.
- Blaton, N. M., Peeters, O. M. & De Ranter, C. J. (1995). Acta Cryst. C51, 777-780.
- McArdle, P. (1994). J. Appl. Cryst. 27, 438-439.
- Nardelli, M. (1983). Comput. Chem. 7, 95-98.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.
- Stewart, J. M., Machin, P. A., Dickinson, C., Ammon, H. L., Heck, H. & Flack, H. (1976). *The XRAY76 System*. Technical Report TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland.
- Stoe & Cie (1992). *REDU4. Data Reduction Program.* Version 7.03. Stoe & Cie, Darmstadt, Germany.

© 1995 International Union of Crystallography Printed in Great Britain – all rights reserved Acta Cryst. (1995). C51, 993-995

tert-Butyl 2-[(Hydroxy)(5-hydroxy-1,3benzodioxol-6-yl)methyl]pyrrolidine-1-carboxylate

GABRIELE BOCELLI AND ANDREA CANTONI

Centro di Studio per la Strutturistica Diffrattometrica del CNR, Viale delle Scienze, I-43100 Parma, Italy

FRANCA BIGI AND GIOVANNI SARTORI

Istituto di Chimica Organica, Universitá di Parma, Viale delle Scienze, I-43100 Parma, Italy

FAUSTO LINA

Centro di Calcolo Elettronico dell'Universitá, Viale delle Scienze, I-43100 Parma, Italy

(Received 19 March 1993; accepted 4 October 1994)

Abstract

The title compound, $C_{17}H_{23}NO_6$, was prepared from a phenoxymagnesium bromide derivative and *N-tert*butoxycarbonyl-L-prolinal in a chemical reaction which is an example of controlled α -chelation. The structure of the compound elucidates the chemical pathway of the synthesis process.

Comment

Ephedrine-like compounds have been obtained with good to excellent diastereoselection (Bigi, Casnati, Sartori & Araldi & Bocelli, 1989; Bigi, Casnati, Sartori & Araldi, 1990) via coordinated Friedel–Crafts alkylation of phenols. In particular, the reaction at room temperature of phenoxymagnesium bromide derivatives (1) with *N-tert*-butoxycarbonyl-L-prolinal, (2) (Boc = *tert*-butoxycarbonyl), gives the 2-hydroxy- α -[1-(*tert*-butoxycarbonylamino)-2-pyrrolidinyl]benzenemethanol derivatives (3) and (4) in good yields and with excellent diastereoselectivity (d.e. > 94%).

This general approach to the synthesis of chiral β amino-ortho-hydroxybenzyl alcohols via direct orthohydroxyalkylation of phenol rings at room temperature with good yields and good diastereoselectivity has already been used with different N-(Boc)- α - aminoaldehydes (Bigi et al., 1989, 1990; Bocelli & Cantoni, 1990). The present paper constitutes a further step in this field of research and reports the structure of (3) with X = 4.5-OCH₂O:

The pyrrole ring is not planar; in terms of Cremer & Pople (1975) notation $[Q = 0.36(1) \text{ Å}, \varphi = 88.9(9)^{\circ}]$ it assumes a twist conformation. The dioxole ring $[Q = 0.18 (10) \text{ \AA}, \varphi = 33.7 (19)^{\circ}]$ has an envelope conformation; atom C5 deviates by 0.29(1) Å from the plane through the other four atoms. This ring forms a dihedral angle of $0.8(2)^{\circ}$ with the planar benzene ring.

The shortest intramolecular contact is $H1O4 \cdot \cdot \cdot O5 =$ 2.04 (9) Å and the shortest intermolecular contacts are $O1 \cdots H12B^{i} = 2.74(7)$ and $O3 \cdots H17B^{ii} = 2.74(13)$ Å [symmetry codes: (i) $\frac{1}{2} - x$, $\frac{1}{2} + y$, $\frac{1}{2} - z$; (ii) $-\frac{1}{2} - x$, $y - \frac{1}{2}, \frac{1}{2} - z].$

The relative configuration of the chiral centres (C8 and C9) corresponds to a syn relative stereo-disposition of the carbon chain, as expected for an α -chelation controlled reaction (Reetz, 1985).

Fig. 1. Perspective view of the molecule showing the atom-labelling scheme. Displacement ellipsoids are plotted at the 30% probability level.

Fig. 2. Crystal packing.

Experimental

The diastereoisomer (3) with X = 4,5-OCH₂O was obtained as a major isomer from the reaction of (1) [X = 4,5]OCH₂O] and (2) (d.e. 94%). Crystals were isolated from pentane/dichloromethane solution (10:4). The space group indicates that the crystal is a racemate rather than a conglomerate in which both the enantiomers are present. Indeed the enantiomeric excess was measured to be 93% by HPLC analysis of MPTA derivatives (Bigi et al., 1990) and the racemate crystallizes preferentially.

Crystal data

Data collection

C17H23NO6 Cu $K\alpha$ radiation $M_r = 337.4$ $\lambda = 1.5418 \text{ Å}$ Monoclinic Cell parameters from 29 $P2_1/n$ reflections $\theta = 11.1 - 37.6^{\circ}$ a = 9.791 (2) Å b = 18.974 (3) Å $\mu = 0.790 \text{ mm}^{-1}$ c = 10.358 (2) Å Room temperature $\beta = 117.51 \ (2)^{\circ}$ Prism V = 1706.7 (6) Å³ $0.9 \times 0.13 \times 0.15$ mm Z = 4Colourless $D_x = 1.313 \text{ Mg m}^{-3}$

 $R_{\rm int} = 0.019$

 $\theta_{\rm max} = 70^{\circ}$

 $l = 0 \rightarrow 11$

 $h = -11 \rightarrow 10$ $k = 0 \rightarrow 23$

1 standard reflection

reflections

monitored every 50

intensity decay: 9%

Siemens AED diffractometer ω -2 θ scans Absorption correction: refined from ΔF (DIFABS; Walker & Stuart, 1983) 3209 measured reflections 3174 independent reflections 1202 observed reflections

Refinement

C3

 $[I > 3\sigma(I)]$

Refinement on F	$(\Delta/\sigma)_{\rm max} = 0.43$
R = 0.059	$\Delta \rho_{\rm max} = 0.22 \ {\rm e} \ {\rm \AA}^{-3}$
wR = 0.066	$\Delta \rho_{\rm min} = -0.24 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.36	Extinction correction: none
1202 reflections	Atomic scattering factors
309 parameters	from International Tables
All H-atom parameters	for X-ray Crystallography
refined	(1974, Vol. IV, Tables
$w = 3.4864 / [\sigma^2(F_o)]$	2.2A and 2.3.1 for O, N,
$+ 0.01159F^{2}$]	C and Table 2.2C for H)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

$U_{eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j$ (Hamilton, 1959).

x	у	Ζ	U_{eq}
0.1553 (6)	0.6154 (2)	-0.0713 (5)	0.075 (3)
0.0343 (6)	0.7020 (2)	-0.2407 (4)	0.073 (3)
0.0706 (5)	0.7380 (2)	0.2988 (5)	0.060(2)
-0.2317 (5)	0.8573 (2)	-0.0124 (6)	0.065 (3)
-0.2648 (5)	0.9829 (2)	0.0648 (6)	0.078 (3)
-0.1237 (5)	1.0570 (2)	0.2521 (5)	0.067 (3)
-0.0038 (6)	0.9709 (2)	0.2030 (5)	0.050(2)
-0.0143 (7)	0.7826 (3)	0.0621 (7)	0.047 (3)
0.0589 (7)	0.7302 (3)	0.1614 (7)	0.049 (3)
0.1169 (8)	0.6716 (4)	0.1266 (8)	0.058 (4)

C4	0.1081(7)	0.6680.0	3) .	-0.0086 (7)	0.053 (3)
C5	0.1386 (15)	0.6000 (6) ·	-0.2036(11)	0.090 (6)
C5 C6	0.1300(13)	0.7196 (3)	-0.2050 (11)	0.050(0)
C7	-0.0265(8)	0.7775 (3) .	-0.1090 (7)	0.054(3)
	-0.0205(8)	0.8473 (2) 2)	0.1000 (8)	0.055(5)
	-0.0015 (8)	0.0473 (<i>3)</i>	0.1000(8)	0.050(4)
09	0.0216 (7)	0.9113 (.	5) 4)	0.1257(7)	0.055(3)
CIU	0.1917 (8)	0.8900 (4	4)	0.2212 (9)	0.060 (4)
CII	0.2643 (11)	0.9672 (5)	0.2892 (12)	0.083 (5)
C12	0.1389 (8)	0.9998 (4	4)	0.3168 (8)	0.070 (4)
C13	-0.1425 (9)	1.0014 (3)	0.1635 (8)	0.055 (3)
C14	-0.2565 (8)	1.0996 (3	3)	0.2370 (7)	0.061 (3)
C15	-0.3733 (13)	1.0563 (5)	0.2552 (12)	0.079 (5)
C16	-0.3260 (11)	1.1365 (5)	0.0905 (10)	0.084 (5)
C17	-0.1801 (11)	1.1508 (-	4)	0.3641 (10)	0.078 (4)
Т	able 2. Sele	cted geom	etric p	arameter	s (Å, °)
01 04		1 292 (0)		-	1 417 (11)
01-04		1.382 (9)		/	1.417 (11)
01-05		1.414 (13)	CI = C	8	1.527 (10)
02-C5		1.422 (13)	C2—C	3	1.370 (11)
O2—C6		1.396 (9)	C3—C	4	1.365 (12)
O3—C2		1.382 (10)	C4—C	6	1.371 (8)
O4—C8		1.404 (7)	C6C	7	1.355 (10)
O5-C13		1.213 (8)	C8—C	9	1.522 (9)
O6-C13		1.354 (8)	С9С	10	1.519 (9)
06-C14		1,477 (9)	C10-	C11	1.528 (12)
		1 472 (9)	CII	C12	1 515 (15)
NI-C12		1.472 (2)	C14-	C15	1.489 (15)
NI CI2		1 354 (10)	C14 (C16	1,517 (11)
		1.334 (10)	C14	C10 C17	1.517 (11)
		1.371 (8)	C14		1.525 (10)
C4-01-	-C5	105.1 (5)	CI-C	7—C6	117.4 (5)
C5-02-	-C6	104.1 (5)	04C	8—C1	107.8 (5)
C13-06	C14	121.2 (5)	C1–C	8—C9	110.9 (6)
C12N1-	C13	122.5 (5)	04—C	8	113.2 (5)
C9-N1-	-C13	124.2 (5)	NI-C	9C8	116.3 (5)
C9N1	-C12	112.9 (5)	C8C	9—C10	114.0 (5)
C7-C1-	-C8	118.7 (5)	NI-C	9—C10	101.3 (5)
<u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	-08	1219(5)	0-0	10-011	106.0 (6)
$C_2 - C_1 - C_1$	7	110 4 (5)	cín		101.5 (7)
$\frac{02}{03}$ $\frac{02}{02}$		117.1(5)			104.6 (6)
$C_{1}^{-}C_{2}^{-}$		171 8 (6)	06_0	12 CH	109.0 (5)
$C_1 - C_2 - C_2$	<u> </u>	121.0 (0)	00-0	13 NI	1264(5)
C)_C2-		110.7 (5)		13-06	120.4(3)
$C_2 - C_3 - C_4$	-04	118.2 (0)		13-00	124.7 (7)
01-04-	-03	130.0 (3)	00-0	14—C17	101.0 (0)
C3-C4-	-06	120.7 (6)	06-0	14—C16	108.9 (6)
01C4	-C6	109.2 (5)	06-0	14—C15	112.0 (5)
01—C5–	02	107.9 (7)	C160	CI4—C17	112.6 (5)
O2—C6–	C4	109.6 (5)	C15-	C14—C17	109.9 (7)
C4—C6—	C7	122.3 (6)	C15—	C14—C16	111.4 (7)
02—C6—	C7	128.1 (5)			
C14-06	C13O5	1.8 (11)	C2—C	1-C8-04	-132.2 (7)
C13-06	-C14-C15	58.9 (9)	C7—C	1-C8C9	-75.6 (8)
C13-06	-C14-C16	-64.8 (8)	C2-C	1-C8-C9	103.4 (8)
C13-06	-C14-C17	176.2 (6)	C7	1-C2-03	178.8 (6)
C14_06	N1	-178 5 (5)			_0.2 (10)
C12NI		1756(7)	$\tilde{\tilde{n}}$		-177 2 (6)
C0 N1	0j	2 2 / 11			75 9 (7)
C12 N1	~13-03	3.3(11)			15.0(/)
CI2-NI	-12 -00	-4.1 (9)			- 102.9 (0)
C12 N1-	-CI-CO	-1/0.4 (3)		-0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	
CI3-NI		- 52.4 (9)	U4—C	٥-ر۶-ر10	- 100.8 (6)
	-U.XU4	48.8 (8)			

The relatively low number of reflections is probably due to both the small dimensions and the quality of the crystal. H atoms were located in a difference Fourier map and refined isotropically. The model with the opposite configuration and the same data set produced an unchanged R factor making it unnecessary to apply the Hamilton (1965) test. The atomic coordinates and Fig. 1 correspond to the configuration of the title compound, which is known from the starting material.

All calculations were performed on an IBM PS2/80 personal computer using the *CRYSRULER* (Rizzoli, Sangermano, Calestani & Andreetti, 1987) package.

Data collection: Belletti, Cantoni & Pasquinelli (1988). Cell refinement: Belletti et al. (1988). Data reduction: DI- Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: PA1057). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Belletti, D., Cantoni, A. & Pasquinelli, G. (1988). Gestione on-line di diffrattometro a cristallo singolo Siemens AED con sistema IBM PS2/30. Internal report 1/88. Centro di Studio per la Strutturistica Diffrattometrica del CNR, Parma, Italy,
- Bigi, F., Casnati, G., Sartori, G. & Araldi, G. (1990). Gazz. Chim. Ital. 120, 413-419.
- Bigi, F., Casnati, G., Sartori, G., Araldi, G. & Bocelli, G. (1989). Tetrahedron Lett. 30, 1121-1124.
- Bocelli, G. & Cantoni, A. (1990). Acta Cryst. C46, 333-334.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Hamilton, W. C. (1959). Acta Cryst. 12, 609-610.
- Hamilton, W. C. (1965). Acta Cryst. 18, 502-510.
- Reetz, M. T. (1985). Pure Appl. Chem. 57, 1781-1788.
- Rizzoli, C., Sangermano, V., Calestani, G. & Andreetti, G. D. (1987). J. Appl. Cryst. 20, 436–439.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.
- Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1995). C51, 995-997

An Intramolecular Diels–Alder Adduct in the Hydroxy- β -ionone Series

Khalil A. Abboud,* Ivani Malvestiti,† Lucian Boldea, Michael A. Walker and Merle A. Battiste

Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA

(Received 3 May 1994; accepted 24 October 1994)

Abstract

The title compound, $(2a\beta,8a\beta,8b\beta)$ -4-acetyl-3,6,6,8btetramethyl-2a,6,7,8,8a,8b-hexahydro-2*H*-naphtho-[8,8a,1-*bc*]furan-2-one, C₁₇H₂₂O₃, was synthesized by the intramolecular reaction of a butynoate ester of hydroxy- β -ionone. Ring *A* adopts the most stable chair

[†] On leave from: Department de Química, Universidade Federal de São Carlos, Via Washington Luiz Km 235, Caixa Postal 676, São Carlos SP 13560, Brazil.